Variations in learning rate: Student classification based on systematic residual error patterns across practice opportunities

نویسندگان

  • Ran Liu
  • Kenneth R. Koedinger
چکیده

A growing body of research suggests that accounting for studentspecific variability in educational data can improve modeling accuracy and may have implications for individualizing instruction. The Additive Factors Model (AFM), a logistic regression model used to fit educational data and discover/refine skill models of learning, contains a parameter that individualizes for overall student ability but not for student learning rate. Here, we show that adding a per-student learning rate parameter to AFM overall does not improve predictive accuracy. In contrast, classifying students into three “learning rate” groups using residual error patterns, and adding a per-group learning rate parameter to AFM, substantially and consistently improves predictive accuracy across 8 datasets spanning the domains of Geometry, Algebra, English grammar, and Statistics. In a subset of datasets for which there are preand post-test data, we observe a systematic relationship between learning rate group and pre-topost-test gains. This suggests there is both predictive power and external validity in modeling these distinct learning rate groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variations in Learning Rate: Student Clustering Based on Systematic Residual Error Patterns Across Practice Opportunities

A growing body of research suggests that accounting for studentspecific variability in educational data can improve modeling accuracy and may have implications for individualizing instruction. The Additive Factors Model (AFM), a logistic regression model used to fit educational data and discover/refine skill models of learning, contains a parameter that individualizes for overall student abilit...

متن کامل

Cystoscopic Image Classification Based on Combining MLP and GA

In the past three decades, the use of smart methods in medical diagnostic systems has attracted the attention of many researchers. However, no smart activity has been provided in the field of medical image processing for diagnosis of bladder cancer through cystoscopy images despite the high prevalence in the world. In this paper, a multilayer neural network was applied to clas...

متن کامل

LEARNER INITIATIVES ACROSS QUESTION-ANSWER SEQUENCES: A CONVERSATION ANALYTIC ACCOUNT OF LANGUAGE CLASSROOM DISCOURSE

This paper investigates learner-initiated responses to English language teachers’ referential questions and learner initiatives after teachers’ feedback moves in meaning-focused question-answer sequences to analyze how interactional practices of language teachers, their initiation and feedback moves, facilitate learner initiatives. Classroom discourse research has largely neglected learner init...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015